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Abstract By means of  a dynamics approach, the phase kansilion of a simple fluid confined by 
WO different adsorbing walls is investigaled using the vm der Waals theory. For mal wening 
situations. we mover the recent results for semnd-order phase msitiors at lhe Critical wall 
separation. In panicular. we study the effeet of surface tieids on the phase behaviour and phase 
transitions of the fluid. 

Recently considerable attention has been focused on the behaviour of fluids confined in 
narrow pores or capillaries [ 11. Most theoretical studies have been concemed with the nature 
of phase equilibria of fluids (or magnets) between parallel plates (slits) that exert equal or 
opposing surface fields 12-15], For the former system, the main features of the phase 
diagram are rather well understood [1,3]. The best known example of a phase transition is 
that of capillary condensation: bulk two-phase coexistence is shilled from chemical potential 
f l  = pSa for wall separation H = m, to p < for finite H. In particular, the bulk 
critical temperature %.b is shifted to T.h, according to finite-size scaling, Tc,.b-c,h Y H-ll”,  
where v is the correlation length critical exponent of bulk fluid. For opposing surface fields, 
however, the phase equilibria of the confined fluid can be very different frmn that for equal 
fields [8l. If the surface field €1 (or €2) is such that critical wetting (or drying) occurs at a 
single wall at a transition temperature T,, then phase coexistence €or finite wall separation 
H is restricted to temperature T c Tc.h c T, (so-called partial wetting situation). In the 
temperature range Tf.b T z T, (the so-called complete wetting situation), there is no 
phase coexistence for finite wall separation, instead, there is a single soft mode. This phase 
has unusual properties, e.g., the existence of an exponentially large transverse correlation 
length - e” for systems with short-range forces in d > 3. The critical point shift 
Tw - K.h - H-’‘ f l~ ,  where j& is the critical exponent that describes the growth of the 
wetting film at a single wall. 

In this work, we intended to study the effects of competitive wall fields on the phase 
behaviour and on the order of the phase transition of a fluid in planar slits with different 
wall fields. In their recent paper, Parry and Evans [SI investigated, within the Landau 
framework, the phase behaviour of an king magnet between opposing plates. In a partial 
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wetting situation (T < Tc,h < T, or cm - V I Z  c €1. €2 < E, +rp/2, see below), there exists 
a critical wall separation Ho. For H z Ho two distinct stable phases coexist while for 
H < NO there is a single phase. The transition at HO is the second-order transition. In their 
paper they were not concerned with how the phase transition is affected by the slight change 
of the surface fields. When the surface fields of the plates are changed very slightly from 
their opposing values, is the phase behaviour different from that of the system for opposing 
surface fields, and how is the phase'transition affected by the change of the surface fields? 
To answer these questions, we consider a simple fluid confined by two different adsorbing 
walls. We present, within the van der Waals framework, analytic results conceming the 
phase equilibria The result of the presence of the coexistence between two confined phases 
and the accompanying criticality in"the partial welting situation is recovered here in detail 
and the discussion is put in a rather different way from that in 181. Our discussion is based 
on the dynamics approach, which h& been proved extremely powerful in studying the order 
of the wetting transition [16-19]. In this approach, the welting problem of a simple fluid 
can be transformed into a problem in classical dynamics. 

In the zeroth-order van der Waals theory, the interfacial free energy functional y [ p ( x ) ]  
is of the form [201 

E J Ding ef ai 

( 1 )  

where p is the chemical potential, f h  is the Helmholtz free energy density of a uniform 
hard-sphere fluid, x ( [ x l )  is the attractive part of the fluid-fluid potential, O(x)  is the total 
solid-fluid potential, H is the wall separation, and p is the equilibrium pressure in the 
fluid. The equilibrium density profile p ( x )  now should be given by the condition y [ p ( x ) ]  
= minimum, which leads to the equation 

p = ph[p(x)I f @ ( x )  t dX'X(1.X - X ' l ) P ( X ' )  (2) 1- 
where Ph = afh/ap is the chemical potential of a hard-sphere fluid. We choose the following 
potentials [ZO]: 

x ( l x  - x'l) = -((Y/~)~-Ix-x'I @(x) = -qe-' -E&' ( € 1  # EZ.0 < x < w. 
(3) 

The positive parameters (Y and ( I ,  EZ m measures of the strength of the atnactive fluid- 
fluid and solid-fluid potentials, respectively. With the above choice of O(x)  and ~ ( 1 x 1 ) .  the 
integral equation (2) can be reduced to a second-order differential equation for ph(j?(X)) : 

(4) dZph/dXZ = P h  - P - ( Y P ( X )  E -dV/dph 

V@h) = -$(Ph -@)' + d p h  - P)  

where 

(5 )  

and Ph = -A + @hp is the pressure of a uniform hard-sphere gas. For concreteness we 
adopt the lattice-gas model for ph(p) and wh(p)  : 

(6) 

(71 

Ph(p) = -kET In(1 - P )  

fih(p) = kET In[p/(l - P)1 
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where ke is Boltzmann’s constant. For subcritical temperature, (Y z a, = 4 k ~ T ,  and V(ph) 
has two ‘hills’, as shown in figure 1. The ‘gas hill’ located on left is denoted by @h = CO,, 
while the ‘liquid hill’ on the right by p h  = @, and we have V(qg) = 0. Moreover, if 
p = - 4 2  = the function V&) has two equal maxima at @ h  = and -m and a 
minimum at p h  = 0, where (00 is the positive root of the equation 

m = (ff/z) mh((pol2ke77. (8) 

At this value of p, bulk coexistence between gas and liquid occurs. Two boundruy conditions 
attached to equation (4) are 

- (d/l.h/&)IxSl = @h[p(o)I - CL - 261 (9) 

and 

- (dh/&)lx=H = Phb(H)I  - /l - 262. (10) 

Equation (4) can be seen as the equation of motion describing a classical pmicle moving 
in the conservative potential (5). Its first integral gives the conservation law of mechanical 
energy 

i ( d j L h / h ) 2  + v ( P h )  = w (1 1) 

where W is the total energy, independent of x ,  whose value depends on p, T and H. 
Solving for the ‘velocity’ & dph/& we have 

dpi,/dr = %[2(W - V)]”’. (12) 

The dynamical trajectories of equation (12) in the !.ih-ph diagram are called energy condition 
lines. When 61 = E,,, = -p/2 = a14 or e2 = cm, the boundary condition line (9) or (10) 
passes through the origin of the &-@h plane of figure 2 The wall separation H,  or in the 
dynamical language, the time taken by a particle in going from the initial state i to the final 
state f is given by 

where U = + 1, depending on the direction of the ‘velocity’. It can be proved, from equations 
(1). (2). (3). (9) and (IO). and with the help of the technique employed by Sullivan 1211, 
that the interfacial free energy is given by 

y = - w H / ~  - ( I / ( Y ) ( E I ~  +czz - &lcze-”) t S/W (14) 

where 
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Figure 1. A qualitative feature of V o l b ) :  (a) p c -el2 and (b) @ =  -a12 (M = m, (P$ = 
-m). 

is the area, in the bh-@h diagrams of figure 2, enclosed by the energy condition line, the 
boundary condition lines, and the 

Several dynamical solutions of the equation of motion (4) consistent with the boundary 
conditions may exist. In such cases, the physically relevant solution is that which carries 
the smallest free energy. In the following, we will find these solutions and compare the 
corresponding free energies. In this way the order of the phase transition will be determined. 

First, we specialize in the case where p = -a/2. In this case there exist coexisting gas 
and liquid phases in the bulk. The full curves in figure 2(a) refer to the energy condition 
lines with different ‘energy’ W, while the full lines refer to the initial condition line lo and 
the final condition line respectively. For the single-wall situation, one could find that the 
crossover between the two different wetting situations is located at cl = E, +m/2. In fact, 
for E ,  > E, + (o&, the intersection between the initial condition line and p h  axis is at 
p~h > rpo, which corresponds to the complete wetting situation (corresponding tempratare 
T 7 Tw). For E, -m/2 < €1 < E,, ,+@/& the intersection is in the region -m < j&h < (00. 
which corresponds to the partial wetting situation (T c: Tw). It is straightforward to prove 
that the transition from partial to complete wetting states is the critical wetting transition, 
which coincides with the result in the original Sullivan model of the wetting transition. 

More specifically we consider the partial wetting situation in which the two walls exert 
opposing surface fields: 

axis. 

E , = E m + 6  € 2 = E , - 8  (16) 
with 0 < 6 < m/Z. We make use of an analytical method, rather than the graphical 
construction used by the authors of 181, to describe the phase behaviour as illustrated in 
figure 2 and figure 3, and the phase transitions between different wetting states. Now the 
boundary conditions (9) and (IO) become 

(dfih/&)lx=o = fih(0) - 26 (17) 

and 

- (dllh/b)\x=H = ILh(H) + 26. (18) 

For a given potential v(ph) and 6. an energy condition line L and the initial condition 
line 10 may have two intersections, or one point of tangency, or no intersections, as shown 
in figure 2. Substituting equation (17) into equation (11). we find 

(19) c = - 2 V g )  - (t - 26)2 
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Figure 2. (a) The relations between enegy condition tin= L and initid candition Sine 10 
in Ule f ih-f ih plane for opposing surface fields. (b), (c)  and (d)  relaled schematic pfi len 
corresponding to four different stales. See the text for details. 

where C = -2W. $ = jLh(0). With a fixed 6, the variation of C can alter the position of the 
energy condition line, so the locations of the intersections between the energy condition l i e  
and the initial condition line vary. As a result. the value of 6 will be changed. Therefore, 
6 is the function of C, or, equivalently, C is the inverse function of 6. When the energy 
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Figure 3. The dependence of C on H near C = CO for 
opposingsurfacefields. Asecond-arderphase~ransition 
occurs at H = Ho. 

Figure 4. The relations between energy condition lines 
L and initial mndition line lo, as well as the hnal 
condition line /I  in Ihe flb-bh plane for A > 0: see 
Ihe text for details. 

condition line is tangential to the initial condition line, C takes its maximum value, and the 
corresponding t is denoted by to .  From the condition aC/at = 0 at = 50 it follows that 
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In the appendix, we will prove that 

and 

Cz<O C3>0 h i > 0  h z > O .  (30) 

From equations ( 2 1 )  and (25) it follows that, for given C < CO, there are two values of 
H / 2  corresponding to two intersections 4 and AI of the energy condition l i e  L and the 
initial condition line lo, respectively. They are 

H + / 2  = H 0 / 2 +  ( h l / a ) f i +  [hlC3/2C; + hz/(-Cz)lr + ... (31)  

and 

H - / 2 =  H 0 / 2 - ( h I / ~ ) f i + [ h i C 3 / 2 C : + h ~ / ( - C z ) l r + . . .  (32)  

with r = CO - C. From figure 2 ( a ) ,  we note that four solutions exist, all of which are 
monotonic, corresponding to four distinct states; their profiles are sketched in figure 2(b), 
(c) and ( d ) .  The solution with the smallest H ,  from Ai to A3. refers to a single phase 
(denoted by state c), the corresponding wall separation being 

H, = 2 ( H - / 2 )  = Ho - (2h I /G)fi + . . . . ( 3 3 )  

The second, from 4 to A*, refers to the largest wall separation (denoted by state a), 
corresponding wall separation being 

Ha = 2 ( H - / 2 )  = Ho + ( 2 h i / f i ) f i + .  . . . (34) 

The third and the fourth, from A I  to Az and from & to A3, have equal interfacial free energy 
and therefore constitute coexisting phases (denoted by states d and b), the corresponding 
wall separation being 

Hd = Hb = H + / 2 +  H-/2= Ho+(hiC,/C:++~/(-Cz))r+... . (35)  

From inequality (30) .  we find that the coefficients before f i  in equation (34)  and before 
r in equation (35) are positive therefore the dependence of C on H near CO is of the shape 
shown in figure 3. As C + CO, all four solutions become identical at the critical value Ho, 
so the four states have the same interfacial free energy. For H < Ho, state c is the only 
possible state, while for H > Ho. we should compm the interfacial free energy of state a 
and b or d. To this end, differentiating equation (14) with respect to H, we obtain 

a y i a u  = (I/ZCU)(C - kleze-") (36)  

and hence 

a 2 y / a H Z  = ( i / w ( a c / a H  +4cleZe-"). ( 3 7 )  

It is easily seen from equations (36) and(37) that a y p  is continuous, but a Z y p H 2  is 
discontinuous at H = Ho; moreover, the value of a Z y / a H 2  at H = HO + 0 in state a is 
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greater than that in state b or d, so the free energy in state a is greater than that in state b 
or d; consequently, state a is unstable. Thus, for H > Ho two distinct stable phases with 
equal y coexist while for H < HO there is a single phase. When H changes from H < Ha, 
passing through H = Ho, to H > Ho, a second-order phase transition from state c to state. 
b or d &es place. 

As demonstrated above, when *e plates exert opposing surface fields, the second-order 
mansition occurs at the critical wall separation Ho.  Now we change the surface fields of 
the plates very slightly from their opposing values, to see how the surface fields affect the 
order of the transition. To this end, we consider the following surface fields: 

(38) 

where A > 0 is an arbitrarily small constant. Now the initial condition (17) still holds, 
while the final condition (18) is of the form 

(39) 

For given potential Vbh), s and A, the phase diagram in the & p h  plane is of the shape 
shown in figure 4. The full curves in figure 4 refer to the energy condition curves with 
different value of C the outer corresponds to the smaller value of C. As C changes from 
large values to small values, the curve moves out. When the curve is tangential to the 
initial condition line lo, there exist two intersections between this energy condition line and 
final condition line I ,  (for A > 0) as  illustrated in figure 4. This value of C comsponds 
to Co. For C > CO, there are no ‘intersections between the energy condition curve and 
the initial condition line; on the other hand, for C < CO, the energy condition curve has 
two intersections with each boundary condition line. Using a similar technique as applied 
above, we can obtain four solutions which are illustrated in figure 5 in the H-C plane near 
C = CO. Now the four distinct states are denoted by a’, b’, c’. d’ respectively. Clearly, 
when A = 0, figure 3 is recovered. Thus coexistence of two phases occurs for H z H. and 
appropriate criticality occurs at H = Ho. When A # 0, the derivative aC/aH for states 
c’ and b’ at C = CO is continuous; thus the value of aZy/aH2 is continuous. Hence, there 
is no phase transition as the state changes from c‘ to b‘. On the other hand, the interfacial 
free energy of state b’ is lower the& that of d’ and a’ as H increases and the interfacial 
free energies of b’ and d‘ go to the same value as H -+ CO, hence these two states are at 
coexistence for infinite wall separation. Consequently, the system with A # 0 is devoid of 
phase transitions at finite wall separation. 

The above discussion refers to the case of p = -up. When p # -u/2 the behaviour 
of the system is different. The occurrence of criticality corresponds to the case where two 
boundary condition lines are tangential to the energy condition curve. When the boundary 
condition line (17) is tangential to curve (11) we have that 

E 3 Ding et 01 

€1 = cm + S €2 = E ,  - (6 - A) 

- (dPh/h)lx=H =Th(H) +2(6 - A ) ,  

q2 = -c - 2v(6) , 11 = -av(t)/aph 11 = e  - 26 (40) 
where (6, q )  is the point of tangency. with .$ = ph(0) and q = dph(O)/dx. When p increases 
from -a12 to -ul2 + d p  both the energy condition line and the boundary condition line 
move a little. For fixed C we have from the first two equations in (40) that 

(41) 

Noting from equation (4) that a2V(t)/aphap = I we get that aV(:)/ap = 6 +& here .$ 
is a constant. So we have that 

d c  = -2d[v(c) + $av(o/aphi2]  = 0. 

dt = -(U + 4 + a v ( ~ ) / a p h i / a v ( ~ ) / a p h ( i  + a 2 v ( o / a d ) ) d p .  (42) 
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I 

H 

Pigure 5. The dependence of C on H near C = CO, 
wilh A z 0. 

Figure 6. The six regions with differsnt phase 
behaviours in the p-A plane. Regions 2 3, 5.6 are 
devoid of phase transitions. Regions 2, 3 refer to the 
‘liquid’ slate, and 5.6 to lhe ‘gas’ state. In regions 1 and 
4 there exist first-order evaporation and condensation 
transitions respectively. These bansitions w n i ~ t e  at 
the critical pint on ihe full line. 

Hence the corresponding increment of 6 is 

a = -[E +4) /2aV(wa/ lh ldf i .  143) 

Similarly, for the other boundary condition line (18) we can find that the increment of 6’ is 

a‘ = [(t’ f 4)/2a v(6’)laNhl dp (44) 

where 5‘ = -6 and aV(c’)/aph = -aV(.$‘)/aph. Consequently the locus of criticality is 
expressed by 

A a v ( o / a P h  = - H P  -I- ff/a (45) 

The phase behaviour in the p-A plane is illushated in figure 6, the full line represents 
the locus of criticality (45). while the broken line corresponds to the bulk first-order phase 
transition. The angle between the full and broken lines is approximately 8 = e-’aV(t)/aph. 
The parameter space then divides into six regions (see also figure 7 in the p-H planes). In 
region I ,  where A > 0, (see figure 7(a)), when the wall separation H increases, the state. 
of the system first changes continuously from c‘ to b‘ (there is no phase transition). For 
H + b3 the value C of state b’ is larger than that of state d‘. From equation (14) we know 
that the interfacial free energy y of the state d’ is lower than that of b‘, so there must be 
a transition point H I ,  at which the state undergoes a jump from b’ to d’. For large H the 
state d’ corresponds to ‘gas’ and b’ to ‘liquid‘. The derivative of y is discontinuous at HI. 
Consequently, the first-order evaporation transition occurs at H = H I ,  as H changes from 
H < HI to H z Hi. The transition terminates at the critical point on the full line of figwe 
6. Coexistence occurs at a shifted bulk field p - psat = /I +u/2 < 0. Similarly, in region 4 
, where A < 0, (see figure 7(c)), the system undergoes a first-order condensation transition 
from d‘ to b‘ as H increases. Coexistence occurs at p - pSat > 0. Regions 2, 3, 5 and 
6, however, are devoid of phase transitions. The regions 2 and 3 refer to the ‘liquid’ state 
while regions 5 and 6 refer to the ‘gas’ state. When p = - 4 2  and A = 0, the coexistence 
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I 
I 

liquid 

(4 

I 
I 

I point 
I 3  

I 
5 1 4  

I I 
I . . .. 

-a/2 

1 st 
order 

liquid 

srilical 
poi01 

H 

- U .  

H 

Fwre 7. 

(c)  A -= 0. 

The six regions wifh differenf phase 
p behaviours in the p H  plane for (U)  A > 0, (b)  A = 0, 

occurs at bulk field p - pa = 0 and H > Ho, and the accompanying criticality occurs at 
H = Ho (see figure 7(b)), which coincides with the result of [81. 

The above results indicate that, when the surface fields of the plates change very slightly 
from their opposing values (A # 0). the phase behaviour is different, and the location of the 
condensation or evaparation transition is delicately dependent on the parameter A, i.e. the 
change of the surface fields of the plates. and the shifted bulk first-order transition, might 
disappear in some parameter range. 

One of the authop (JYC) wishes to thank Professor R Evans for introducing her to the 
wetting problem and sending her preprints of his papers. This project is supported by the 
National Basic Research Project 'Nonlinear Science' and by the Education Committee of 
the State Council through the Foundation of Doctoral Training. 

Appendix 

In this appendix, we prove the two sets of inequalities (29) and (30). starting from condition 

2s coo. (AI) 

From equation (8), we have 

lY = 2m/-h((Po/2kBT). (W 
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This is a monotonically increasing function of @. Considering equation (Al), we obtain 

(Y > 4S/tanh(8/kBT). (A3) 

Since tanh8lkBT 4 1, we have a > 46. 
From (20) it follows that 

a tanh(60/2k~?’) = 46. 

Comparing (A3) and (A4), we obtain 

0 < eo < 26 

This completes the proof of (29). 

From (A4) we get 

60 = ~ B T  In[@ +&)/(a - 46)]. (A61 

Consequently 

[ d z L ’ t t ) / ~ z ] l ~  -1  + (1/2k~T)(~r’ - 166’)/2a (A7) 

[d3V(t)/d6311b = -(6/(k~T)’)(a’ - 1662)/arz. (A@ 

From (22). (23) and (A7), (A8) the first two inequalities of (30) can be easily obtained, 
while the third inequality can be derived from (26). 

To prove the last inequality of (30). we first demonshate 

c2 >. 4 8 / 6 0  (As) 

that is 

(a2 - 168’)/4a < 26/In[(a + 46/a -U) ] .  M O )  

To prove (AIO), we consider the following function 

f ( t )  = ln(t + 1) - t ( t  + 2)/2(r + 1). 

Since f (0) = 0, moreover 

d f / d f  = -r2/2(1 + t)2 c 0 

it follows that, for t > 0, f ( t )  < 0. We set 

I = @/(U - 46) 

which leads to (AIO). 
In addition, it is necessary to prove that 
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for O < Ph 6 60. III fact, if we define F(ch)= - 2v(ph) + 26&h), it is easy to test 
F(&J) = 0; moreover, when 0 < ph < 60 

E J Ding et a1 

d F / d h  = Ph[4'%l- a/[Ph/ mh(Ph/2k~T)11. 

Noting that (A2) is the monotonically increasing function of plo, we have 

dFldfih = Ph(@/h - a/[6o/M(b/2k~T)]) = 0 

where (A4) is used This completes the proof of (A14). Combining (A14) and (28), we 
obtain 

Integrating the right-hand side of (A.15). we have 

J G &~0/46(x - 60)'. ( A W  

From (A.9) and (A.16). and inequalities CZ c 0 and J =- 0. it follows that 

CzJ 2 -1/2(26 - 60)~. (A17) 

Applying this result to (27). we obtain the last inequality of (30). 
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